
Influence-Based Provenance for Dataflow Applications with Taint Propagation
Jason Teoh1, Muhammad Ali Gulzar2, Miryung Kim1

1University of California, Los Angeles, 2Virginia Tech

Problem Statement
What inputs are responsible for 

producing suspicious output?

Key Insight

Fig. 1: Running example program

FlowDebug improves provenance 
precision by tracking input 
contribution within UDFs.

Novelty 1: UDF Tainting 

Novelty 2. Influence Function

Current State of the Art
• Data Provenance: Trace the movement of records 

through operators (e.g. Aggregate)

• Delta Debugging: Use an output test function to 
guide binary search reduction of input space.

Test: 
output < 60

FlowDebug automatically tracks UDF control and data 
flow through instrumented data types.

<<interface>> InfluenceFunction
+ init(): InfluenceFunction
+ mergeValue(V): InfluenceFunction
+ mergeFunc(InfluenceFunction): InfluenceFunction
+ finalize(): Provenance

• UDF-Aware Tainting and Influence Functions can be 
used together to improve provenance trace precision.

Comparisons against Titian (Provenance), BigSift (Delta Debugging), and Spark (baseline)

Evaluation Results

:
FlowDebug extends Spark’s combineByKey API with 
Influence Functions to define flexible, user-defined 
provenance.

[RQ2] Instrumentation Overhead
•5.4-8X faster with Influence Functions
•50% overhead with UDF-Aware Tainting
•0.4-6.1X overhead vs Spark

[RQ3] Tracing Time
•12-73X, 374-1506X faster than Titian 
and BigSift
•Tracing at most 25% of total job

[RQ1] Precision
•15-100% precision improvement vs Titian
•96.8-99.3% recall improvement vs BigSift


