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Problem Statement
What inputs are responsible for 

producing suspicious output?

Key Insight

Fig. 1: Running example program

FlowDebug improves provenance 
precision by tracking input 
contribution within UDFs.

Novelty 1: UDF Tainting 

Novelty 2. Influence Function

Current State of the Art
• Data Provenance: Trace the movement of records 

through operators (e.g. Aggregate)

• Delta Debugging: Use an output test function to 
guide binary search reduction of input space.

Test: 
output < 60

FlowDebug automatically tracks UDF control and data 
flow through instrumented data types.

<<interface>> InfluenceFunction
+ init(): InfluenceFunction
+ mergeValue(V): InfluenceFunction
+ mergeFunc(InfluenceFunction): InfluenceFunction
+ finalize(): Provenance

• UDF-Aware Tainting and Influence Functions can be 
used together to improve provenance trace precision.

Comparisons against Titian (Provenance), BigSift (Delta Debugging), and Spark (baseline)

Evaluation Results

:
FlowDebug extends Spark’s combineByKey API with 
Influence Functions to define flexible, user-defined 
provenance.

[RQ2] Instrumentation Overhead
•5.4-8X faster with Influence Functions
•50% overhead with UDF-Aware Tainting
•0.4-6.1X overhead vs Spark

[RQ3] Tracing Time
•12-73X, 374-1506X faster than Titian 
and BigSift
•Tracing at most 25% of total job

[RQ1] Precision
•15-100% precision improvement vs Titian
•96.8-99.3% recall improvement vs BigSift


